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Abstract. We continue our study of the first critical field Hc1 for extreme type-II super-

conductors governed by the three-dimensional magnetic Ginzburg–Landau functional with

a pinning term aε, as introduced in our previous work [DVR25]. Building upon the lower

bound for Hc1 and the characterization of the Meissner solution, we now establish a match-

ing upper bound for Hc1 , thereby identifying its leading-order behavior. This result confirms

the sharpness of the previously derived lower bound and further elucidates the connection

between the onset of vorticity and a weighted variant of the isoflux problem. Our argu-

ment is prompted by the upper bound construction we developed in [RSS25], based on the

Biot–Savart law.

1. Introduction

The magnetic Ginzburg–Landau model [GL50] has long served as a cornerstone in the
mathematical and physical study of superconductivity, providing a phenomenological frame-
work that captures the macroscopic behavior of superconducting materials under applied
magnetic fields. In type-II superconductors, the emergence of vortex filaments—localized
regions where superconductivity breaks down—is a defining feature. These filaments nucle-
ate when the applied magnetic field exceeds a threshold known as the first critical field, Hc1 .
Understanding the precise onset of vorticity is a central problem, particularly in three di-
mensions, where vortex filaments are line-like and their geometry is more intricate, requiring
the use of geometric measure theoretic tools in their analysis.

This work is the continuation of our study [DVR25] of the first critical field for the
Ginzburg–Landau functional incorporating a spatially dependent pinning term aε(x), which
models material inhomogeneities. This setting reflects realistic superconducting samples
where impurities or structural variations affect the energy landscape.
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2 UPPER BOUND FOR THE FIRST CRITICAL FIELD IN 3D PINNED GINZBURG–LANDAU

After nondimensionalization of the physical constants, one may reduce to studying the
energy functional

(1.1) GLε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(aε(x)− |u|2)2 + 1

2

∫
R3

|H−Hex|2.

Here, Ω is a bounded domain of R3, which we assume to be simply connected with C2

boundary. The function u : Ω → C is the order parameter ; its squared modulus (the
density of Cooper pairs of superconducting electrons in the BCS quantum theory [BCS57])
indicates the local state of the superconductor. The vector field A : R3 → R3 is the
electromagnetic vector potential of the induced magnetic field H = curlA, and ∇A denotes
the covariant gradient ∇ − iA. The external (or applied) magnetic field is given by Hex :
R3 → R3, which we assume takes the form Hex = hexH0,ex, where H0,ex is a fixed vector
field and hex is a tunable real parameter representing the intensity of the external field. The
parameter ε > 0 is the inverse of the Ginzburg–Landau parameter, usually denoted κ, a
non-dimensional constant depending only on the material. We are interested in the regime
of small ε, corresponding to extreme type-II superconductors. Finally, aε is a function that
accounts for inhomogeneities in the material; we assume aε ∈ L∞(Ω) and that it takes values
in [b, 1], where b ∈ (0, 1) is a constant independent of ε. Regions where aε = 1 correspond
to sites without inhomogeneities.

We remark that the Ginzburg–Landau model is a U(1)-gauge theory, in which all the
meaningful physical quantities are invariant under the gauge transformations u → ueiΦ,
A → A +∇Φ, where Φ is any regular enough real-valued function. Two important gauge
quantities are the supercurrent and the vorticity, respectively defined, for any sufficiently
regular configuration (u,A), as

(1.2) j(u,A) = (iu,∇Au), µ(u,A) = curl j(u,A) + curlA,

where (·, ·) denotes the scalar product in C identified with R2. As ε → 0, the vorticity
essentially concentrates in a sum of quantized Dirac masses supported on co-dimension 2
objects. This, together with the crucial fact that most of the energy concentrates around
these objects, is what has essentially allowed mathematicians to analyze the model.

We refer the reader to [DVR25] and references therein for more background on the model.
There, we established a lower bound for the first critical field Hc1 and characterized the
Meissner solution, the unique (up to gauge transformation) vortexless minimizer of the energy
below this threshold. Our analysis suggested that the onset of vorticity is governed by a
weighted variant of the isoflux problem studied in [ABM06,Rom19a,RSS23,RSS25], hinting
at a connection between the Ginzburg–Landau framework and geometric optimization, which
is influenced by the presence of the pinning function. However, the absence of a matching
upper bound left open the question of whether this optimization problem truly captures the
leading-order behavior of Hc1 .

In the present work, we continue this investigation by establishing a matching upper bound
for Hc1 , thereby identifying its leading-order behavior. This result confirms the sharpness
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of the lower bound derived in [DVR25] and completes the asymptotic characterization (to
leading order) of the first critical field in the presence of pinning. Our argument is prompted
by the upper bound construction we developed in [RSS25], which is based on the Biot–
Savart law. This approach allowed us to capture not just the leading-order contribution of
the (homogeneous) Ginzburg–Landau energy in the presence of prescribed bounded vorticity,
but in fact the energy up to an oε(1) error. It serves as a foundation for the present analysis
in the weighted Ginzburg–Landau setting.

The upper bound in the present work is obtained by constructing a test configuration in
which vorticity concentrates along smooth curves that are nearly optimal for the weighted
isoflux problem. We show that the energy of this configuration becomes favorable once the
applied field exceeds a threshold matching the lower bound provided in [DVR25], up to
leading order. This confirms that the transition from the Meissner phase to the vortex phase
is characterized by the weighted isoflux problem. Our analysis also reveals that the pinning
term aε(x) plays a subtle role in shaping the vortex landscape, influencing both the location
and structure of the filaments.

Together with the results of [DVR25], our work provides a complete asymptotic description
of the first critical field in the pinned three-dimensional Ginzburg–Landau model. This
description aligns with the one we previously established for the analogous problem in the
two-dimensional setting [DVR24], as well as in the homogeneous three-dimensional case
[ABM06,BJOS13,Rom19a].

In order to state our first result, we recall that the analysis of (1.1) can be reduced to
analyzing the weighted Ginzburg–Landau functional (see [DVR25, Section 2])

(1.3) G̃Lε(u,A) =
1

2

∫
Ω

ρ2ε|∇Au|2 +
ρ4ε
2ε2

(1− |u|2)2 + 1

2

∫
R3

|H −Hex|2,

where the weight ρε is the unique positive real-valued function that satisfies −∆ρε =
ρε
ε2
(aε − ρ2ε) in Ω

∂ρε
∂ν

= 0 on ∂Ω.

We remark that u and u are related by u = ρεu, while A = A. One straightforwardly verifies
that b ≤ ρ2ε ≤ 1. We will assume throughout this article that aε is such that there exist
α ∈ (0, 1), N > 0, and C1 > 0 (that do not depend on ε) such that

(1.4) ∥ρε∥C0,α(Ω) ≤ C1| log ε|N .
Our first result establishes an upper bound for the free-energy functional associated with

(1.3), that is, the functional considered in the absence of an external field. It provides an
explicit configuration for which the vorticity concentrates on a given curve Γ parametrized
by arc length. This construction is optimal at leading order and shows that the energetic
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cost of such a vortex line is, to leading order, bounded above by π|ρ2εΓ|| log ε|, where

(1.5) |ρ2εΓ| :=
∫ |Γ|

0

ρ2ε(Γ(s)) ds.

Theorem 1.1. Let Γ be a C2 simple open curve in Ω, parametrized by arc length, that
intersects ∂Ω transversally. Assume (1.4) holds. Then, for any ε > 0 sufficiently small,
there exists (uε, A) ∈ H1(Ω,C)×H1(R3,R3) such that

(1.6) Fε,ρε(uε, A) :=
1

2

∫
Ω

ρ2ε|∇Auε|2 +
ρ4ε
2ε2

(1− |uε|2)2 +
1

2

∫
R3

| curlA|2

≤ π|ρ2εΓ|| log ε|+
(
N

α
+ 1

)
π log | log ε|+ CΩ,Γ + oε(1),

where CΩ,Γ is the constant defined in (2.6).
In addition, it holds that, for any β ∈ (0, 1], we have

(1.7) ∥µ(uε, A)− 2πΓ∥(C0,β
T (Ω,R3))∗ ≤ Cε

2
3
β| log ε|1−

2
3
β,

where C0,β
T (Ω,R3) denotes the space of β-Hölder continuous vector fields defined in Ω whose

tangential component vanishes on ∂Ω.

We now turn to our main result on the first critical field. For that, we briefly recall two
key ingredients from our previous work [DVR25]:

• Meissner state: The Ginzburg–Landau model admits a unique configuration, modulo
gauge transformations, that we refer to as the Meissner state, in reference to the Meiss-
ner effect in physics. This state is obtained by minimizing the Ginzburg–Landau energy
GLε(u,A) under the constraint |u| = ρε. In the gauge where divA = 0 in R3, the Meissner
state takes the form

(ρεe
ihexϕ0

ε , hexA
0
ε),

where ϕ0
ε and A0

ε depend on the domain Ω, the applied field H0,ex, and the weight function
ρε.

Although this configuration is not a true critical point of (1.1), it provides a good
approximation of the unique minimizer (still in the same gauge) below the first critical
field, as ε → 0.

Closely related is a special vector field B0
ε ∈ C0,1

T (Ω,R3), which satisfies

A0
ε −∇ϕ0

ε =
curlB0

ε

ρ2ε
in Ω,

with divBA = 0 in Ω and BA × ν = 0 on ∂Ω.
The regularity of the vector field B0

ε , fundamental to our analysis, mainly depends on
the regularity of H0,ex in Ω. In particular, assuming henceforth H0,ex ∈ L3(Ω,R3), we have
that

∥B0
ε∥C0,γ

T (Ω,R3) ≤ C for any γ ∈ (0, 1),
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where the constant C > 0 does not depend on ε; see [DVR25, Proposition 2.2].

• Weighted isoflux problem: We let N (Ω) be the space of normal 1-currents supported in
Ω, with boundary supported on ∂Ω. We denote by | · | the mass of a current. Recall that
normal currents are currents with finite mass, whose boundaries have finite mass as well.
We also let X denote the class of currents in N (Ω) that are simple oriented Lipschitz
curves. An element of X must either be a loop contained in Ω or have its two endpoints
on ∂Ω.

For any vector field B ∈ C0,1
T (Ω,R3) and any Γ ∈ N (Ω) we denote by ⟨Γ , B⟩ the value

of Γ applied to B, which corresponds to the circulation of the vector field B on Γ when Γ
is a curve.

We also define ρ2εΓ ∈ N (Ω) by duality, that is, for any 1-form ω supported in Ω, we let

⟨ρ2εΓ , ω⟩ := ⟨Γ , ρ2εω⟩.

Definition 1.1 (Weighted isoflux problem for type-II superconductivity). The weighted
isoflux problem is the question of maximizing over N (Ω) the ratio

Rρ2ε
(Γ) :=

⟨Γ , B0
ε ⟩

|ρ2εΓ|
.

Let us remark that the existence of maximizers for Rρ2ε
is ensured by the weak-⋆ se-

quential compactness of N (Ω). Also, let us notice that in the case Γ is a smooth curve
parametrized by arc length, (1.5) holds.

In [DVR25] we showed that the occurrence of vortex filaments is possible only if hex ≥ Hε
c1
,

where

Hε
c1
:=

| log ε|
2Rε

and Rε := sup
Γ∈X

Rρ2ε
(Γ) = sup

Γ∈X

⟨Γ , B0
ε ⟩

|ρ2εΓ|
,

showing in particular that, for some constant K0 > 0 independent of ε, one has

Hε
c1
−K0 log | log ε| ≤ Hc1 .

Our main result on this paper complements this by providing an upper bound that matches
this lower bound at leading order, that is,

Hc1 ≤ Hε
c1
+K0 log | log ε|,

for some constant K0 independent of ε.
We need the following assumptions. First, we assume that, for any ε sufficiently small,

there exists a C2 open simple curve Γε parametrized by arc length which intersects ∂Ω
transversely and such that

(1.8) Rρ2ε
(Γε) = Rε +Oε(| log ε|−1).

We assume in addition that there exists a positive constant C0 (independent of ε) such that

(1.9) |Γε| ≤ C0
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and

(1.10) CΩ,Γε ≤ C0 log | log ε|,
where CΩ,Γε is the constant defined in (2.6).

Theorem 1.2. Assume (1.4), (1.8), (1.9), (1.10), and that lim inf
ε→0

Rε > 0. Then there exist

ε0 > 0 and K0 > 0 such that, for any ε < ε0, any η ∈
(
0, 1

2

)
, and any

(1.11) Hε
c1
+K0 log | log ε| ≤ hex ≤ ε−η,

the global minimizers (u,A) of GLε do have vortices.

The hypotheses (1.4), (1.8), (1.9), and (1.10) are assumed in order to have good control
on the weighted isoflux problem as ε → 0. In the special situation when aε = a(x) is a C1

function that does not depend on ε and such that it is constant near the boundary of Ω,
when Ω is a ball, and H0,ex = ẑ, then all the hypotheses about Γε are satisfied, provided
that a is sufficiently close to 1. This ensures that the case remains comparable to the one
analyzed for the (non-weighted) isoflux problem, see [ABM06,Rom19a,RSS23,RSS25]. In
this case ρ2ε converges uniformly to a as ε → 0. We nonetheless expect the hypotheses above
to hold in a much more general setting, which of course needs verification depending on the
model of aε that one works with.

On the other hand, in [DVR25, Proposition 1.2], we provided a sufficient condition for
lim inf
ε→0

Rε > 0 to hold.

Plan of the paper. The rest of the paper is organized as follows. In Section 2, we provide
some preliminary results on tubular neighborhoods of a curve, the Biot–Savart vector field
associated with a curve, and an energy splitting formula. In Section 3, we present a proof
of Theorem 1.1. Finally, in Section 4, we provide a proof of Theorem 1.2.

Acknowledgments. This work was partially funded by ANID FONDECYT 1231593.

2. Some preliminaries

2.1. Tubular neighborhood of a curve. Let Γ : [0, |Γ|] → R3 be a C2 simple curve
parametrized by arc length. We define e1(s), e2(s) such that (Γ′(s), e1(s), e2(s)) is a direct
orthonormal basis for any s and C1 smooth with respect to s.
We define the regular tubular neighborhood Tδ(Γ) of Γ by

Tδ(Γ) = {Γ(s) + y | s ∈ [0, |Γ|], y ⊥ Γ′(s), |y| < δ},
where its thickness δ > 0 is assumed to be sufficiently small so that the normal projection Π :
Tδ(Γ) → Γ([0, |Γ|]) is well defined and C1. In Tδ(Γ), we make use of curvilinear coordinates
(s, v, w), that is

(2.1) x = Γ(s) + x⊥(s, v, w), x⊥(s, v, w) = ve1(s) + we2(s),
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for any x = x(s, v, w) ∈ Tδ(Γ). The volume element in these coordinates is

(2.2) dV = |1− x⊥ · Γ′|dsdvdw = (1 +O(δ))dsdvdw.

2.2. Biot–Savart vector field. We next recall a result proved in [RSS25, Section 2], con-
cerning the Biot–Savart vector field associated to a smooth simple closed curve Γ in R3,
which is defined as

XΓ(p) =
1

2

∫
t

Γ(t)− p

|Γ(t)− p|3
× Γ′(t) dt.

We recall that XΓ is divergence-free, satisfies

(2.3) curlXΓ = 2πΓ in R3,

and belongs to Lp
loc(R3,R3) for any 1 ≤ p < 2.

Moreover, if we let pΓ denote the nearest point to p on Γ,

(2.4) XΓ(p)−
pΓ − p

|pΓ − p|2
× Γ′(pΓ)

is in Lq(Tδ(Γ),R3), for any q ≥ 1.

Proposition 2.1. Assume Γ is a C2 simple closed curve in R3 which intersects ∂Ω transver-
sally. Then there exists a unique divergence-free jΓ : Ω → R3, belonging to Lp(Ω,R3) for any
p < 2, and a unique divergence-free AΓ ∈ H1(R3,R3) such that{

curl(jΓ + AΓ) = 2πΓ in Ω
ν · jΓ = 0 on ∂Ω

and such that
−∆AΓ = jΓ1Ω in R3

holds in the sense of distributions. In particular, jΓ and AΓ only depend on Γ ∩ Ω. It also

holds that AΓ ∈ W
2, 3

2
loc (R3,R3), that jΓ −XΓ ∈ W 1,q(Ω,R3) for any q < 4, and that

(2.5) jΓ −XΓ + AΓ = ∇fΓ in Ω

for some harmonic function fΓ ∈ W 1,q(Ω) for any q < 4.

An important role in the upper bound construction will be played by the following con-
stant.

Definition 2.1. Let Γ be a C2 simple closed curve in R3 that intersects ∂Ω transversally.
We apply Proposition 2.1 and define

(2.6) CΩ,Γ =
1

2

∫
R3

| curlAΓ|2 + lim
ρ→0

(
1

2

∫
Ω\Tρ(Γ)

|jΓ|2 + π|Γ| log ρ

)
,

where |Γ| denotes the length of Γ in Ω.
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2.3. Energy splitting. Throughout this paper, we assume that Hex ∈ L2
loc(R3,R3) is such

that divHex = 0 in R3, consistent with the non-existence of magnetic monopoles. Conse-
quently, there exists a vector potential Aex ∈ H1

loc(R3,R3) such that

curlAex = Hex and divAex = 0 in R3.

The natural space for minimizing GLε is H
1(Ω,C)× [Aex +Hcurl], where

Hcurl := {A ∈ H1
loc(R3,R3)| curlA ∈ L2(R3,R3)};

see [Rom19a].
We next recall the energy splitting provided in [DVR25, Proposition 1.1], which plays a

crucial role in the proof of Theorem 1.2.

Proposition 2.2. Given any configuration (u,A) ∈ H1(Ω,C)× [Aex+Hcurl(R3,R3)], letting
(u,A) be defined via the relation (u,A) = (ρεue

ihexϕε , A+ hexA
0
ε), we have

(2.7) GLε(u,A) = GLε(ρεe
ihexϕε , hexA

0
ε) + Fε,ρε(u,A)− hex

∫
Ω

µ(u,A) ·B0
ε + r,

where

(2.8) r :=
h2
ex

2

∫
Ω

| curlB0
ε |2

ρ2ε
(|u|2 − 1).

3. Upper bound for the free energy

In this section we provide a proof for Theorem 1.1.

Proof of Theorem 1.1. We first let rε := | log ε|−q, for some q > 1 to be fixed later, and
note that Γ can be extended to a C2 simple closed curve in R3, with the extension being
supported on the complement of Ω. Throughout this proof, although the curve Γ has been
extended, its length is consistently measured with respect to its original definition within Ω.

We will construct a complex-valued function uε of the form

uε(x) := |uε|(x)eiφ(x).
Recalling Section 2.1, we start by defining its modulus as

|uε|(x) =


1

f0
(
rε
ε

)f0(dist(x,Γ)

ε

)
if x ∈ Trε(Γ)

1 if x ∈ Ω \ Trε(Γ),

where hereafter f0 denotes the modulus of the degree-one radial vortex solution u0 that
appears in [SS07, Proposition 3.11]. We recall from this book that lim

R→∞
f0(R) → 1 and

(3.1) lim
R→∞

(
1

2

∫ R

0

(
|f0′|2 +

f0
2

r2
+

(1− f0
2)2

2

)
rdr − 1

2π
(π logR + γ)

)
= 0,

where γ > 0 is the universal constant first introduced in the seminal work [BBH94].
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We now proceed to define the phase of uε. We let φ be defined via

(3.2) ∇φ = XΓ +∇fΓ in Ω,

where XΓ and fΓ are defined by applying Proposition 2.1. Let us remark that curlXΓ = 2πΓ
in R3 guaranties that φ is a well-defined function in Ω modulo 2π.

Finally, we apply once again Proposition 2.1, in order to define

A(x) = AΓ(x).

The rest of the proof is divided in several steps.

Step 1. Estimating |∇Auε|2 − |∇uε|2 over Trε(Γ) ∩ Ω.
A straightforward computation shows that

|∇Auε|2 − |∇uε|2 = |uε|2
(
|A|2 − 2∇φ · A

)
.

We denote hereafter TΩ
rε(Γ) := Trε(Γ) ∩ Ω. Since |uε|2 ≤ 1, we apply Hölder’s inequality to

obtain∣∣∣∣∣
∫
TΩ
rε (Γ)

|∇Auε|2 − |∇uε|2
∣∣∣∣∣ ≤ ∥A∥2L2(TΩ

rε
(Γ),R3) + 2∥∇φ∥

L
3
2 (TΩ

rε
(Γ),R3)

∥A∥L3(TΩ
rε (Γ),R3).

Since A ∈ W 2, 3
2 (Ω,R3), from Sobolev embedding it follows that A ∈ Lr(Ω,R3) for any r ≥ 1.

In particular, from the Cauchy–Schwarz inequality, we obtain

∥A∥L3(TΩ
rε (Γ),R3) ≤ ∥A∥L6(TΩ

rε (Γ),R3)|TΩ
rε(Γ)|

1
6 ≤ Cr

1
3
ε = oε(1).

Moreover, ∇φ ∈ Lr(Ω,R3) for any r < 2, which follows from Proposition 2.1. Hence,

(3.3)

∣∣∣∣∣
∫
TΩ
rε
(Γ)

|∇Auε|2 − |∇uε|2
∣∣∣∣∣ ≤ C∥A∥L3(TΩ

rε
(Γ),R3) = oε(1).

Step 2. Energy estimate over TΩ
rε(Γ).

We claim that

(3.4)
1

2

∫
TΩ
rε
(Γ)

ρ2ε|∇uε|2 +
ρ4ε
2ε2

(1− |uε|2)2 ≤ π|ρ2εΓ| log
rε
ε
+ γ|Γ|+ oε(1),

where γ is the constant that appears in (3.1).
Let us start by observing that, since ρε ≤ 1, we have

1

2

∫
TΩ
rε

(Γ)

ρ2ε|∇uε|2 +
ρ4ε
2ε2

(1− |uε|2)2 ≤
1

2

∫
TΩ
rε
(Γ)

ρ2ε

(
|∇uε|2 +

1

2ε2
(1− |uε|2)2

)
.

Next, given a point p ∈ Trε(Γ), we denote by pΓ its nearest point on Γ and let

Ds := {p ∈ Trε(Γ) : pΓ = Γ(s)} .
Notice that Ds is a disk in R2 of radius rε centered at Γ(z).
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Recalling (2.4), we find that

hΓ(p) := XΓ(p)− YΓ(p) ∈ Lq
(
Trε(Γ),R3

)
for any q ≥ 1, where

YΓ(p) :=
pΓ − p

|pΓ − p|2
× Γ′(pΓ).

Recalling (3.2) and applying Hölder’s inequality, we deduce that
(3.5)∫

TΩ
rε
(Γ)

|∇φ− YΓ|2 =
∫
TΩ
rε

(Γ)

|hΓ +∇fΓ|2 ≤ |TΩ
rε(Γ)|

1
3 ∥hΓ +∇fΓ∥2L3(TΩ

rε
(Γ),R3) ≤ Cr

2
3
ε = oε(1),

where we used the fact that hΓ +∇fΓ ∈ L3(TΩ
rε(Γ),R

3).
Using (3.5), and recalling that |uε| ≤ 1 and ρε ≤ 1, we deduce that

(3.6)

∫
TΩ
rε

(Γ)

ρ2ε

(
|∇uε|2 +

1

2ε2
(1− |uε|2)2

)
=

∫
TΩ
rε
(Γ)

ρ2ε

(
|∇|uε||2 + |uε|2|∇φ|2 + 1

2ε2
(1− |uε|2)2

)
=

∫
TΩ
rε (Γ)

ρ2ε

(
|∇|uε||2 + |uε|2|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
+ oε(1).

Using the coordinates defined in (2.1), and recalling (2.2), we then find∫
TΩ
rε (Γ)

ρ2ε

(
|∇|uε||2 + |uε|2|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
=

∫ |Γ|

0

(∫
Ds∩Ω

ρ2ε

(
|∇|uε||2 + |uε|2|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
(1 +Oε(rε))dvdw

)
ds.

Combining this with (3.6), we are led to

(3.7)

∫
TΩ
rε

(Γ)

ρ2ε

(
|∇uε|2 +

1

2ε2
(1− |uε|2)2

)
≤ (1 +Oε(rε))

∫ |Γ|

0

(∫
Ds∩Ω

ρ2ε

(
|∇|uε||2 + |uε|2|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
dvdw

)
ds+ oε(1).

Let us now deal with the weight. From the hypothesis (1.4) on ρε, we observe that for any
point x = x(v, w, s) ∈ Ds ∩ Ω, we have, using once again that ρε ≤ 1,

|ρ2ε(x)− ρ2ε(Γ(s))| = |ρε(x)− ρε(Γ(s))||ρε(x) + ρε(Γ(s))|

≤ 2rαε ∥ρε∥C0,α(TΩ
rε
(Γ)) ≤ 2C1r

α
ε | log ε|

N .
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In particular, for any q > N
α
, we deduce that the RHS is oε(1). Hence, using thatDs∩Ω ⊂ Ds,

we find

(3.8)

∫ |Γ|

0

(∫
Ds∩Ω

ρ2ε

(
|∇|uε||2 + |uε|2|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
dvdw

)
ds

≤
∫ |Γ|

0

ρ2ε(Γ(s))

(∫
Ds

(
|∇|uε||2 + |uε|2|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
dvdw

)
ds+ oε(1).

Notice that we conveniently defined |uε| slightly outside Ω, so that we do not have to perform
a special computation next depending on the endpoints of Γ, viewed as the original curve
without extension beyond Ω.

To compute the integral over Ds we use polar coordinates (r, θ) centered at Γ(s). We have

|∇|uε|(x)| =
∣∣f0′ ( rε)∣∣
εf0
(
rε
ε

) |∇r| =
∣∣f0′ ( rε)∣∣
εf0
(
rε
ε

) and |YΓ| =
r

r2
|Γ′(s)| = 1

r
.

It follows that∫
Ds

(
|∇|uε||2 + |uε|2|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
dvdw

= 2π

∫ rε

0

 f0
′ ( r

ε

)2
ε2f0

(
rε
ε

)2 +
f0
(
r
ε

)2
r2f0

(
rε
ε

)2 +
1

2ε2

(
1−

f0
(
r
ε

)2
f0
(
rε
ε

)2
)2
 rdr

= 2π

∫ rε
ε

0

 f0
′(t)2

f0
(
rε
ε

)2 +
f0(t)

2

s2f0
(
rε
ε

)2 +
1

2

(
1− f0(t)

2

f0
(
rε
ε

)2
)2
 tdt,

where in the last equality we used the change of variables r = εt. Finally, using the fact that
lim
ε→0

f0
(
rε
ε

)
= 1, which follows from lim

ε→0

rε
ε
= +∞, we deduce from (3.1) that

1

2

∫
Ds

(
|∇|uε||2 + ρ2ε|YΓ|2 +

1

2ε2
(1− |uε|2)2

)
dvdw =

(
π log

rε
ε
+ γ + oε(1)

)
.

By combining this with (3.7) and (3.8), we are led to

1

2

∫
TΩ
rε
(Γ)

ρ2ε

(
|∇uε|2 +

1

2ε2
(1− |uε|2)2

)
≤ 1

2
(1 +Oε(rε))

∫ |Γ|

0

ρ2ε(Γ(s))
(
π log

rε
ε
+ γ + oε(1)

)
ds ≤ π|ρ2εΓ|

rε
ε
+ |Γ|γ + oε(1),

where in the last inequality we used that q > 1, which implies that Oε(rε) log
rε
ε
= oε(1).

The claim (3.4) is thus proved.

Step 3. Energy estimate outside TΩ
rε(Γ).



12 UPPER BOUND FOR THE FIRST CRITICAL FIELD IN 3D PINNED GINZBURG–LANDAU

In the region Ω \ Trε(Γ), we have |uε| ≡ 1 and therefore, using (2.5) and (3.2), we find

|∇Auε| = |∇φ− A| = |XΓ +∇fΓ − AΓ| = |jΓ| .

Using once again that |uε| ≡ 1 in Ω \ Trε(Γ) and that ρε ≤ 1 in Ω, we have

1

2

∫
Ω\Trε (Γ)

ρ2ε|∇Auε|2 +
ρ4ε
2ε2

(1− |uε|2)2 +
1

2

∫
R3

| curlA|2 ≤ Iε,

where

Iε :=
1

2

∫
Ω\Trε (Γ)

|∇Auε|2 +
1

2

∫
R3

| curlA|2 = 1

2

∫
Ω\Trε (Γ)

|jΓ|2 +
1

2

∫
R3

|curlAΓ|2 .

Recalling (2.6), we obtain
Iε = CΩ,Γ + π|Γ| log rε + oε(1).

Hence

(3.9)
1

2

∫
Ω\Trε (Γ)

ρ2ε|∇Auε|2 +
ρ4ε
2ε2

(1− |uε|2)2 +
1

2

∫
R3

| curlA|2 ≤ π|Γ| log rε + CΩ,Γ + oε(1).

Step 4. Final energy estimate.
By combining the main estimates from the previous steps, namely (3.3), (3.4), and (3.9),

we are led to

Fε,ρε(uε, A) =
1

2

∫
Ω

ρ2ε|∇Auε|2+
ρ4ε
ε2
(1− |uε|2)2 +

1

2

∫
R3

| curlA|2

≤ π|ρ2εΓ|| log ε|+ π|Γ| log rε + CΩ,Γ + γ|Γ|+ oε(1)

≤ π|ρ2εΓ|| log ε|+
(
N

α
+ 1

)
π|Γ| log | log ε|+ CΩ,Γ + oε(1),

where, in the last inequality, we fixed the exponent q = N
α
+1 > 1 so that rε = | log ε|−(

N
α
+1),

which allows us to absorb the term γ|Γ|. We remark that the choice of q is arbitrary among
numbers strictly larger than max{N

α
, 1}. This completes the proof of (1.6).

Step 5. Vorticity estimate. Let B ∈ C0,1
T (Ω,R3). By integration by parts, recalling (1.2)

and that |uε| ≡ 1 in Ω \ Trε(Γ), we have∫
Ω

µ(uε, A) ·B =

∫
Ω

curl (j(uε, A) + A) ·B =

∫
Ω

(j(uε, A) + A) · curlB

=

∫
Ω

|uε|2∇φ · curlB +

∫
Ω

(1− |uε|2)A · curlB

=

∫
Ω

∇φ · curlB +

∫
TΩ
rε
(Γ)

(1− |uε|2)(A−∇φ) · curlB.(3.10)
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We start by estimating the second integral in the RHS of (3.10). Since A − ∇φ = jΓ ∈
Lq(Ω,R3) for q < 2, using that 1−|uε|2 ≤ 1 and b ≤ ρ2ε ≤ 1, by applying Hölder’s inequality
we deduce that∣∣∣∣∣

∫
TΩ
rε
(Γ)

(1− |uε|2)jΓ · curlB

∣∣∣∣∣ ≤ ∥ curlB∥L∞(Ω,R3)∥jΓ∥L 3
2 (Ω,R3)

∥(1− |uε|2)∥L3(TΩ
rε
(Γ),R3)

≤ C∥ curlB∥L∞(Ω,R3)∥(1− |uε|2)∥
2
3

L2(TΩ
rε (Γ),R3)

≤ C∥ curlB∥L∞(Ω,R3)ε
2
3

(∫
Ω

ρ4ε
ε2
(1− |uε|2)2

) 1
3

≤ C∥ curlB∥L∞(Ω,R3)ε
2
3 | log ε|

1
3 ,(3.11)

where in the last inequality we used that∫
Ω

ρ4ε
ε2
(1− |uε|2)2 ≤ C| log ε|

in view of (3.4).

We now proceed to compute the first integral in the RHS of (3.10). Using (3.2) and an
integration by parts, we obtain

(3.12)

∫
Ω

∇φ · curlB =

∫
Ω

(XΓ +∇fΓ) · curlB =

∫
Ω

curlXΓ ·B.

Finally, recalling (2.3), from (3.10), (3.11), and (3.12), we deduce that

∥µ(uε, A)− 2πΓ∥(C0,1
T (Ω,R3))∗ ≤ Cε

2
3 | log ε|

1
3 .

This concludes the proof of (1.7) for β = 1. The proof of the estimate for β ∈ (0, 1) follows
from interpolation. In fact, from [Rom19b, Lemma 8.1], we have that

∥µ(uε, A)∥(C0
0 (Ω,R3))∗ ≤ C

(
1

2

∫
Ω

|∇Auε|2 +
1

2ε2
(1− |uε|2)2 + | curlA|2

)
.

Since ρε ≥ b, we deduce that the RHS is bounded above by CFε,ρε(uε, A). Using (1.6) and
∥Γ∥(C0(Ω))∗ ≤ C, we then deduce that

∥µ(uε, A)− 2πΓ∥(C0
0 (Ω,R3))∗ ≤ C| log ε|.

To conclude, we use interpolation (see, for instance, [JMS04], which builds upon [JS02])

∥µ(uε, A)− 2πΓ∥(C0,β
T (Ω,R3))∗

≤ ∥µ(uε, A)− 2πΓ∥β
(C0,1

T (Ω,R3))∗
∥µ(uε, A)− 2πΓ∥1−β

(C0
0 (Ω,R3))∗

≤ Cε
2
3
β| log ε|1−

2
3
β.

This concludes the proof of (1.7) for β ∈ (0, 1).

□
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4. Upper bound for the first critical field

In this section we provide a proof for Theorem 1.2.

Proof of Theorem 1.2. We consider, for any ε sufficiently small, curves Γε such that (1.8),
(1.9), and (1.10) hold. By applying Theorem 1.1 with Γ = Γε, we obtain a pair (uε, Aε) ∈
H1(Ω,C)×H1(R3,R3) such that

(4.1) Fε,ρε(uε, Aε) =
1

2

∫
Ω

ρ2ε|∇Aεuε|2 +
ρ4ε
2ε2

(1− |uε|2)2 +
1

2

∫
R3

| curlAε|2

≤ π|ρ2εΓε|| log ε|+
(
N

α
+ 1

)
π log | log ε|+ CΩ,Γε + oε(1)

and, for any β ∈ (0, 1],

(4.2) ∥µ(uε, Aε)− 2πΓε∥(C0,β
T (Ω,R3))∗ ≤ Cε

2
3
β| log ε|1−

2
3
β.

Notice, in particular, that if assumption (1.9) does not hold, then it becomes necessary to
carefully track the dependence on the curve length in the constants appearing throughout
the proof of Theorem 1.1. The same applies to the present proof, where we will repeatedly
use the bound |ρ2εΓε| ≤ |Γε| ≤ C0.

We now consider the configuration

(uε,Aε) = (ρεuεe
ihexϕ0

ε , Aε + hexA
0
ε),

where (ρεe
ihexϕ0

ε , hexA
0
ε) is the Meissner state. Using the energy splitting (2.7), we find

(4.3) GLε(uε,Aε) = GLε(ρεe
ihexϕε , hexA

0
ε) + Fε,ρε(uε, Aε)− hex

∫
Ω

µ(uε, Aε) ·B0
ε + r.

Let us estimate r. From (2.8), using Hölder’s inequality and b ≤ ρ2ε ≤ 1, we are led to

r ≤ Ch2
exε∥ curlB0

ε∥2L4(Ω)

(∫
Ω

ρ4ε
ε2
(1− |uε|2)2

) 1
2

.

From (1.6), we find ∫
Ω

ρ4ε
ε2
(1− |uε|2)2 ≤ C| log ε|.

On the other hand, from [DVR25, Proposition 2.2], we have

∥ curlB0
ε∥2L4(Ω) ≤ C,

where C does not depend on ε. Since we assume (1.11), we then deduce that

r ≤ Cε1−2η| log ε|
1
2 = oε(1).
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Using (4.2), (1.11), and the fact that B0
ε ∈ C0,1

T (Ω,R3) with ∥B0
ε∥C0,β

T
≤ C for any β ∈

(0, 1), where the constant C does not depend on ε (see once again [DVR25, Proposition 2.2]),
we find

hex

∫
Ω

µ(uε, Aε) ·B0
ε = 2πhex⟨Γε , B

0
ε ⟩+ oε(1) = 2πhexRρ2ε

(Γε)|ρ2εΓε|+ oε(1).

Inserting hex ≥ Hε
c1
+K0 log | log ε| = | log ε|

2Rε
+K0 log | log ε| and using (1.8), we then obtain

hex

∫
Ω

µ(uε, Aε) ·B0
ε ≥ π|ρ2εΓε|| log ε|+ 2πK0Rε|ρ2εΓε| log | log ε|+Oε(1).

Using this together with (4.1) in (4.3), we deduce that

(4.4) GLε(uε,Aε) ≤ GLε(ρεe
ihexϕε , hexA

0
ε)

+

(
N

α
+ 1

)
π log | log ε|+ CΩ,Γε − 2πK0Rε|ρ2εΓε| log | log ε|+Oε(1).

Let us now show that there exists c0 > 0 (independent of ε) such that

(4.5) |ρ2εΓε| ≥ c0 > 0.

We start by closing Γε by connecting its endpoints with a curve lying on ∂Ω. More precisely,
we consider an arbitrary smooth curve on ∂Ω that connects the endpoints of Γε, oriented
consistently with the orientation of Γε and such that, if we denote by Γ̃ε the resulting loop,
we have |Γ̃ε| ≤ C|Γε|. Since B0

ε × ν = 0 on ∂Ω, by Stokes’ theorem, we have

⟨Γε , B
0
ε ⟩ = ⟨Γ̃ε , B

0
ε ⟩ =

∫
SΓε

curlB0
ε ,

where SΓε denotes a surface with least area among those whose boundary is Γ̃ε, i.e. a solution
to the associated Plateau’s problem.

By Hölder’s inequality and the isoperimetric inequality, we have∫
SΓε

| curlB0
ε | ≤ ∥ curlB0

ε∥L4(Ω,R3)Area(SΓε)
3
4 ≤ C(|Γ̃ε|2)

3
4 ≤ C|Γε|

3
2 ≤ C|ρ2εΓε|

3
2 .

Therefore,

Rρ2ε
(Γε) ≤ C|ρ2εΓε|

1
2 ,

which combined with lim inf
ε→0

Rε > 0 and (1.8) yields the claim.

By combining (4.5) and (1.10) with (4.4), we are led to

GLε(uε,Aε) ≤ GLε(ρεe
ihexϕε , hexA

0
ε)

+

((
N

α
+ 1

)
π + C0 − 2πc0K

01

2
lim inf
ε→0

Rε

)
log | log ε|+Oε(1),

where we also used that Rε ≥ 1
2
lim infε→0 > 0 for any ε sufficiently small.
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Hence, provided

K0 >

(
N
α
+ 1
)
π + C0

πc0 lim inf
ε→0

Rε

+ 1,

we have

(4.6) GLε(uε,Aε) ≤ GLε(ρεe
ihexϕε , hexA

0
ε)− log | log ε|+Oε(1).

On the other hand, by [DVR25, Theorem 1.2], since we assume hex ≤ ε−η, for η ∈
(
0, 1

2

)
(recall (1.11)), we know that if (u,A) is a configuration without vortex lines — that is,
|u| > c > 0 for some c > 0 — such that

GLε(u,A) ≤ GLε(ρεe
ihexϕε , hexA

0
ε),

then necessarily
GLε(u,A) = GLε(ρεe

ihexϕε , hexA
0
ε) + oε(1).

Combining this with (4.6), yields

GLε(u,A) > GLε(uε,Aε) +
1

2
log | log ε|.

We have thus constructed a configuration (uε,Aε) with a single vortex line located at Γε,
such that its energy is strictly less than any configuration without vortex lines. Hence the
global minimizer of the energy GLε must have vortex lines provided

hex ≥ Hε
c1
+K0 log | log ε|.

This concludes the proof. □
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