FIRST CRITICAL FIELD IN THE PINNED THREE-DIMENSIONAL
GINZBURG-LANDAU MODEL: A MATCHING UPPER BOUND

CARLOS ROMAN

ABSTRACT. We continue our study of the first critical field H., for extreme type-II super-
conductors governed by the three-dimensional magnetic Ginzburg-Landau functional with
a pinning term a., as introduced in our previous work [DVR25]. Building upon the lower
bound for H,., and the characterization of the Meissner solution, we now establish a match-
ing upper bound for H,,, thereby identifying its leading-order behavior. This result confirms
the sharpness of the previously derived lower bound and further elucidates the connection
between the onset of vorticity and a weighted variant of the isoflux problem. Our argu-
ment is prompted by the upper bound construction we developed in [RSS25], based on the
Biot—Savart law.

1. INTRODUCTION

The magnetic Ginzburg-Landau model [GL50] has long served as a cornerstone in the
mathematical and physical study of superconductivity, providing a phenomenological frame-
work that captures the macroscopic behavior of superconducting materials under applied
magnetic fields. In type-II superconductors, the emergence of vortex filaments—localized
regions where superconductivity breaks down—is a defining feature. These filaments nucle-
ate when the applied magnetic field exceeds a threshold known as the first critical field, H,.
Understanding the precise onset of vorticity is a central problem, particularly in three di-
mensions, where vortex filaments are line-like and their geometry is more intricate, requiring
the use of geometric measure theoretic tools in their analysis.

This work is the continuation of our study [DVR25] of the first critical field for the
Ginzburg-Landau functional incorporating a spatially dependent pinning term a.(z), which
models material inhomogeneities. This setting reflects realistic superconducting samples
where impurities or structural variations affect the energy landscape.
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After nondimensionalization of the physical constants, one may reduce to studying the
energy functional

1 1 1
1.1 Le(u,A) = = P+ — —[u?)?+= [ |H- Heul*
(L) GLA) =5 [ [VauP + g5lanlo) — P+ 5 [ - A

Here, € is a bounded domain of R?, which we assume to be simply connected with C?
boundary. The function u : Q@ — C is the order parameter; its squared modulus (the
density of Cooper pairs of superconducting electrons in the BCS quantum theory [BCS57])
indicates the local state of the superconductor. The vector field A : R® — R3 is the
electromagnetic vector potential of the induced magnetic field H = curl A, and V5 denotes
the covariant gradient V — ¢A. The external (or applied) magnetic field is given by Hy :
R?* — R3, which we assume takes the form He, = heyHoex, where Hoey is a fixed vector
field and hey is a tunable real parameter representing the intensity of the external field. The
parameter ¢ > 0 is the inverse of the Ginzburg—Landau parameter, usually denoted k, a
non-dimensional constant depending only on the material. We are interested in the regime
of small €, corresponding to extreme type-II superconductors. Finally, a. is a function that
accounts for inhomogeneities in the material; we assume a. € L*>°(Q2) and that it takes values
in [b, 1], where b € (0,1) is a constant independent of €. Regions where a. = 1 correspond
to sites without inhomogeneities.

We remark that the Ginzburg-Landau model is a U(1)-gauge theory, in which all the
meaningful physical quantities are invariant under the gauge transformations u — ue'®,
A — A 4+ V®, where ® is any regular enough real-valued function. Two important gauge
quantities are the supercurrent and the vorticity, respectively defined, for any sufficiently
regular configuration (u, A), as

(1.2) j(u, A) = (1u,Vau), p(u,A) =-curlj(u,A)+curlA,

where (-,-) denotes the scalar product in C identified with R%. As ¢ — 0, the vorticity
essentially concentrates in a sum of quantized Dirac masses supported on co-dimension 2
objects. This, together with the crucial fact that most of the energy concentrates around
these objects, is what has essentially allowed mathematicians to analyze the model.

We refer the reader to [DVR25] and references therein for more background on the model.
There, we established a lower bound for the first critical field H., and characterized the
Meissner solution, the unique (up to gauge transformation) vortexless minimizer of the energy
below this threshold. Our analysis suggested that the onset of vorticity is governed by a
weighted variant of the isoflux problem studied in [ABMO06, Rom19a, RSS23, RSS25], hinting
at a connection between the Ginzburg-Landau framework and geometric optimization, which
is influenced by the presence of the pinning function. However, the absence of a matching
upper bound left open the question of whether this optimization problem truly captures the
leading-order behavior of H.,.

In the present work, we continue this investigation by establishing a matching upper bound
for H.,, thereby identifying its leading-order behavior. This result confirms the sharpness
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of the lower bound derived in [DVR25] and completes the asymptotic characterization (to
leading order) of the first critical field in the presence of pinning. Our argument is prompted
by the upper bound construction we developed in [RSS25], which is based on the Biot—
Savart law. This approach allowed us to capture not just the leading-order contribution of
the (homogeneous) Ginzburg-Landau energy in the presence of prescribed bounded vorticity,
but in fact the energy up to an o.(1) error. It serves as a foundation for the present analysis
in the weighted Ginzburg-Landau setting.

The upper bound in the present work is obtained by constructing a test configuration in
which vorticity concentrates along smooth curves that are nearly optimal for the weighted
isoflux problem. We show that the energy of this configuration becomes favorable once the
applied field exceeds a threshold matching the lower bound provided in [DVR25], up to
leading order. This confirms that the transition from the Meissner phase to the vortex phase
is characterized by the weighted isoflux problem. Our analysis also reveals that the pinning
term a.(z) plays a subtle role in shaping the vortex landscape, influencing both the location
and structure of the filaments.

Together with the results of [DVR25], our work provides a complete asymptotic description
of the first critical field in the pinned three-dimensional Ginzburg-Landau model. This
description aligns with the one we previously established for the analogous problem in the
two-dimensional setting [DVR24], as well as in the homogeneous three-dimensional case
[ABM06,BJOS13, Rom19a].

In order to state our first result, we recall that the analysis of (1.1) can be reduced to
analyzing the weighted Ginzburg-Landau functional (see [DVR25, Section 2])

~ 1 4 1
(13) CLw )= [ AVau + L5 0= luP? 4 5 [ |H = Hof
2 Q 2€2 2 R3
where the weight p. is the unique positive real-valued function that satisfies
~Ap. = Ba.—p2) mo
Ope

v
We remark that u and u are related by u = p.u, while A = A. One straightforwardly verifies

that b < pg < 1. We will assume throughout this article that a. is such that there exist
a € (0,1), N >0, and Cy > 0 (that do not depend on ¢) such that

(1.4) | pel| oy < Ch|log e\N.

=0 on 0f2.

Our first result establishes an upper bound for the free-energy functional associated with
(1.3), that is, the functional considered in the absence of an external field. It provides an
explicit configuration for which the vorticity concentrates on a given curve I parametrized
by arc length. This construction is optimal at leading order and shows that the energetic
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cost of such a vortex line is, to leading order, bounded above by 7|p?[|| log &|, where

T
(15) AT = / A(T(s)) ds.

Theorem 1.1. Let I' be a C? simple open curve in Q, parametrized by arc length, that
intersects 02 transversally. Assume (1.4) holds. Then, for any € > 0 sufficiently small,
there exists (u., A) € H'(Q,C) x H'(R3,R3) such that

(16) Py (e d) = [ AIVauf+
Q

1 p?

2e2

1
1 — 2\2 - 1A2
: (1= ) 45 [ Jeur A

N
< rlprltogel + (5 + 1) wlog loge] + Co + 0.1,

where Cqr is the constant defined in (2.6).

In addition, it holds that, for any 8 € (0,1], we have

2 2
(1.7) | pe(ue, A) — 27TFH(C%5(QR3))* < Cei?|loge| 37,

where CF_OF’B(Q, R3) denotes the space of S-Holder continuous vector fields defined in 2 whose
tangential component vanishes on 0S2.

We now turn to our main result on the first critical field. For that, we briefly recall two

key ingredients from our previous work [DVR25]:

o Meissner state: The Ginzburg-Landau model admits a unique configuration, modulo

gauge transformations, that we refer to as the Meissner state, in reference to the Meiss-
ner effect in physics. This state is obtained by minimizing the Ginzburg-Landau energy
GL.(u, A) under the constraint |u| = p.. In the gauge where div A = 0 in R?, the Meissner
state takes the form

(paeiheX(bga hexAS)v
where ¢? and AY depend on the domain , the applied field Hg ey, and the weight function
Pe-

Although this configuration is not a true critical point of (1.1), it provides a good
approximation of the unique minimizer (still in the same gauge) below the first critical
field, as ¢ — 0.

Closely related is a special vector field B € C’%I(Q, R3), which satisfies
curl B?

Pz
with div B4 =0 1in © and B4 x v = 0 on 0f).

The regularity of the vector field BY, fundamental to our analysis, mainly depends on

the regularity of Hy ey in Q. In particular, assuming henceforth Hy e € L*(92,R?), we have
that

AY -Vl = in Q,

HBSHC’%W(Q’R% < (' for any vy € (O, 1),
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where the constant C' > 0 does not depend on ¢; see [DVR25, Proposition 2.2].

o Weighted isoflux problem: We let N(2) be the space of normal 1-currents supported in
Q, with boundary supported on 9. We denote by | - | the mass of a current. Recall that
normal currents are currents with finite mass, whose boundaries have finite mass as well.
We also let X denote the class of currents in N(Q) that are simple oriented Lipschitz
curves. An element of X must either be a loop contained in Q or have its two endpoints
on Of).

For any vector field B € C2'(Q,R?) and any I’ € A(Q) we denote by (I', B) the value
of I" applied to B, which corresponds to the circulation of the vector field B on I' when I’
is a curve.

We also define p?T" € N(Q) by duality, that is, for any 1-form w supported in €, we let

(pel',w) == (T, p2w).
Definition 1.1 (Weighted isoflux problem for type-II superconductivity). The weighted

isoflux problem is the question of maximizing over N'(Q) the ratio

(T, BY)
R, () := R

Let us remark that the existence of maximizers for R, is ensured by the weak-x se-
quential compactness of N'(Q). Also, let us notice that in the case I' is a smooth curve
parametrized by arc length, (1.5) holds.

In [DVR25] we showed that the occurrence of vortex filaments is possible only if ey > H ,
where loge| . BY)
. oge » De
= ——— and R.,:=supR(I') =sup ——,
“ " IR, < 1= up Rep(1) = sup |p2T]
showing in particular that, for some constant Ky > 0 independent of ¢, one has

H; — Koylog|loge| < H,,.
Our main result on this paper complements this by providing an upper bound that matches
this lower bound at leading order, that is,
H., < H: + Klog|loge|,
for some constant K° independent of ¢.
We need the following assumptions. First, we assume that, for any e sufficiently small,

there exists a C? open simple curve I'. parametrized by arc length which intersects 09
transversely and such that

(1.8) R,2(Te) = R. + O] loge| ™).
We assume in addition that there exists a positive constant C (independent of €) such that

(1.9) T < Cy
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and
(1.10) Car. < Cylog|logel,
where Cq 1. is the constant defined in (2.6).

Theorem 1.2. Assume (1.4), (1.8), (1.9), (1.10), and that lirgri}iglf R. > 0. Then there exist
go > 0 and K° > 0 such that, for any € < gy, any n € (O, %), and any

(1.11) HE + K log |loge| < hex <77,

the global minimizers (u, A) of GL. do have vortices.

The hypotheses (1.4), (1.8), (1.9), and (1.10) are assumed in order to have good control
on the weighted isoflux problem as ¢ — 0. In the special situation when a. = a(z) is a C*
function that does not depend on e and such that it is constant near the boundary of €2,
when 2 is a ball, and Hyex = 2, then all the hypotheses about I'. are satisfied, provided
that a is sufficiently close to 1. This ensures that the case remains comparable to the one
analyzed for the (non-weighted) isoflux problem, see [ABMO06, Rom19a, RSS23, RSS25]. In
this case p? converges uniformly to a as e — 0. We nonetheless expect the hypotheses above
to hold in a much more general setting, which of course needs verification depending on the
model of a. that one works with.

On the other hand, in [DVR25, Proposition 1.2], we provided a sufficient condition for
liran_}glf R. > 0 to hold.

Plan of the paper. The rest of the paper is organized as follows. In Section 2, we provide
some preliminary results on tubular neighborhoods of a curve, the Biot-Savart vector field
associated with a curve, and an energy splitting formula. In Section 3, we present a proof
of Theorem 1.1. Finally, in Section 4, we provide a proof of Theorem 1.2.

Acknowledgments. This work was partially funded by ANID FONDECYT 1231593.

2. SOME PRELIMINARIES

2.1. Tubular neighborhood of a curve. Let I' : [0,|T']] — R? be a C? simple curve
parametrized by arc length. We define e;(s), es(s) such that (I'(s),e1(s), ea(s)) is a direct
orthonormal basis for any s and C! smooth with respect to s.

We define the regular tubular neighborhood T5(I") of I' by

T5() ={L'(s) +y [ s € [0,[T]), y LI(s), |yl <6},

where its thickness 6 > 0 is assumed to be sufficiently small so that the normal projection II :
T5(T) — T(]0, |T]]) is well defined and C*. In T5(T'), we make use of curvilinear coordinates
(s,v,w), that is

(2.1) z=T(s) 4+ zt(s,v,w), z*(s,v,w) = ve,(s) + wey(s),
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for any = = z(s,v,w) € T5(I"). The volume element in these coordinates is
(2.2) dV = |1 — 2 - T'|dsdvdw = (1 4 O(4))dsdvduw.

2.2. Biot—Savart vector field. We next recall a result proved in [RSS25, Section 2], con-
cerning the Biot-Savart vector field associated to a smooth simple closed curve I' in R?,
which is defined as

1 [ I@)—p
Xr(p :—/—,XF/t dt.
RV ANOETE
We recall that X is divergence-free, satisfies
(2.3) curl Xt = 27T in R?,

and belongs to LY (R3 R3) for any 1 < p < 2.

loc
Moreover, if we let pr denote the nearest point to p on I,

(2.4) Xr(p) — L T (pr)

N lpr — p|?
is in LI(T5(T),R3), for any ¢ > 1.

Proposition 2.1. Assume T is a C? simple closed curve in R® which intersects O transver-
sally. Then there exists a unique divergence-free jr : Q — R3, belonging to LP(Q2,R3) for any
p < 2, and a unique divergence-free Ar € H'(R3 R3) such that

curl(jr + Ar) = 27 in Q
v-jr = 0 on 0f)

and such that
—AAr = jrlg in R?
holds in the sense of distributions. In particular, jr and Ar only depend on I' N Q. It also
holds that Ar € VVE)C% (R?,R?), that jr — Xr € WH(Q,R?) for any ¢ < 4, and that
(2.5) jr—Xr+Ar=V/fr in Q
for some harmonic function fr € W14(Q) for any q < 4.

An important role in the upper bound construction will be played by the following con-
stant.

Definition 2.1. Let I' be a C? simple closed curve in R? that intersects O transversally.
We apply Proposition 2.1 and define

1 1
(2.6) Caor = - | curl Ap|? + lim (—/
’ 2 R3 p—0 2 Q

e [* + L] 10gp> ,
\T,(T)

where |I'| denotes the length of T in Q.
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2.3. Energy splitting. Throughout this paper, we assume that H., € L?_(R? R?) is such
that div H,, = 0 in R?, consistent with the non-existence of magnetic monopoles. Conse-
quently, there exists a vector potential Ao € H. . (R3 R?) such that

loc

curl A,y = Ho, and  div Ae, = 0 in R3.
The natural space for minimizing GL. is H' (2, C) X [Aex + Heun, where
Hewi = {A € H. (R* R*)|curl A € L*(R* R*)};

see [Rom19a].
We next recall the energy splitting provided in [DVR25, Proposition 1.1], which plays a
crucial role in the proof of Theorem 1.2.

Proposition 2.2. Given any configuration (v, A) € H'(Q, C) X [Aex + Heun (R?, R?)], letting
(u, A) be defined via the relation (u, A) = (p.ue=?s A + he A2), we have

(2.7)  GL.(w,A) = GL(p.e"% hee AY) + F. ,_(u, A) — / p(u, A) - B? +x,
Q

where
|curl B2J? BO|2
(2.8) - / (Jul? - 1).

3. UPPER BOUND FOR THE FREE ENERGY
In this section we provide a proof for Theorem 1.1.

Proof of Theorem 1.1. We first let r. := |loge|™?, for some ¢ > 1 to be fixed later, and

note that I' can be extended to a C? simple closed curve in R?, with the extension being

supported on the complement of 2. Throughout this proof, although the curve I' has been

extended, its length is consistently measured with respect to its original definition within €2.
We will construct a complex-valued function u. of the form

us(z) = |ug|(x)e?@.

Recalling Section 2.1, we start by deﬁning its modulus as

fo (diSt(;’ D) it v € T, (T)
1 itfoeQ\ T (D),

where hereafter f, denotes the modulus of the degree-one radial vortex solution uy that
appears in [SS07, Proposition 3.11]. We recall from this book that ]%im fo(R) — 1 and
—00

(3.1) Jim G/ (yf |2+—+ﬂ) rdr—i(mogRﬂ)) =0,

2 2T

where v > 0 is the universal constant first introduced in the seminal work [BBH94].

uel(z) = ¢ fo (f)
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We now proceed to define the phase of u.. We let ¢ be defined via
(32) V(P = XF + Vfr in Q,

where Xt and fr are defined by applying Proposition 2.1. Let us remark that curl X = 27T’
in R? guaranties that ¢ is a well-defined function in Q modulo 2.
Finally, we apply once again Proposition 2.1, in order to define

A(x) = Ar(x).
The rest of the proof is divided in several steps.

Step 1. Estimating |V au.|> — |Vu.|* over T,_(T) N Q.
A straightforward computation shows that

|V auc]? — [Vue|? = |u.|? (]A\2 -2V - A) .

We denote hereafter sz () :=T,.(T') N Q. Since |u|* < 1, we apply Holder’s inequality to
obtain

< AR s vy + 20V 3 g g 1A 20020

/ |V au, |2 | Vu, |
TS (T)

Since A € W22 (2, R%), from Sobolev embedding it follows that A € L™(€2, R?) for any r > 1.
In particular, from the Cauchy—Schwarz inequality, we obtain

1 1
1Al Lo (ryrs) < 1 AllLsere oy [T (D[ < Cré = o.(1).
Moreover, Vo € L"(£2,R3) for any r < 2, which follows from Proposition 2.1. Hence,

/ Vol — [V
TS(I)

Te

(3.3) < C||Allsz2 0y 53 = 0-(1).

Step 2. Energy estimate over T:}(T).
We claim that

1 4
GO g [ TP S PP < Al o o+ 0. (0)
(D)

where v is the constant that appears in (3.1).
Let us start by observing that since p. < 1, we have

1 1 1
5/ PV + (1_| wf?)? < 2/ <|Vu€|2—|——(1—|u6|2)2>.
TL(T) TT%(F)

Next, given a point p € T, TE(F), we denote by pr its nearest point on I' and let

Dy:={peT, (') : pr=T(s)}.
Notice that D, is a disk in R? of radius r. centered at I'(2).
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Recalling (2.4), we find that
hr(p) == Xr(p) — Yr(p) € L (T,.(T),R’)
for any ¢ > 1, where
Pr—p '
YF p = — X F pr‘ .
)= b )

Recalling (3.2) and applying Holder’s inequality, we deduce that
(3.5)

[, we=Yel = [ et VAP <IT2OR e+ Vel < Crd = 0.(1),
T2 (T) T2 (T)

where we used the fact that hr + V fr € L*(T2(T), R3?).
Using (3.5), and recalling that |u.| < 1 and p. < 1, we deduce that

1
3.6 2 Ve + = (1 = |u]?)?
30 [, ot (190l gt )

1
-/ (WMW+WHW%+—ﬂ—MHﬁ
TS (F)

1
= [ (Tl P g ) + 00
(F)

7"6

Using the coordinates defined in (2.

D,
1
[ (9l v+ - fu?)
T2 (1)

=[ﬁ(@m QWMPHMWW+iﬂ—MHﬁu+@mmw@ma

Combining this with (3.6), we are led to

1
e | (Wm%%—u—mmﬁ
TS (F) 2¢e?

7| 1
< +05<r5))/ </ . (ywugu2 P Ve 4 (1 |u5|2)2) dvdw) ds+ o.(1).
0 DsNQ 2

Let us now deal with the weight. From the hypothesis (1.4) on p., we observe that for any
point x = z(v,w, s) € Dy N, we have, using once again that p. < 1,

[p2(x) = p2(T(s))| = lpe() = p=(L(3))llp=(x) + pe(T(s))]

< 28| pell oo (g ry) < 2C1rE|loge|™

and recalling (2.2), we then find
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In particular, for any g > %, we deduce that the RHS is o.(1). Hence, using that D;NQ C Dy,
we find

T 1
(3.8) / </ (]V|u5||2 + Jue 2| Yr|* + —(1 — |u5|2)2) dvdw) ds
0 DSmQ

< IFIpfﬁ,’(F(S)) |V|ua||2+|ua|2|YF|2+i2(1_|ua|2)2 dvdw | ds + oc(1).
J S z

Notice that we conveniently defined |u.| slightly outside 2, so that we do not have to perform
a special computation next depending on the endpoints of I', viewed as the original curve
without extension beyond (2.
To compute the integral over DS we use polar coordinates (r, ) centered at I'(s). We have
I (r
- r 1
ELAG R Yr| = —|(s) = .

U |(x Vr| =
|V ue|(2)] = Vr| = o (=) 2 "

8fo(g)

It follows that

1
[ (10l P+ 1= ) e
D. 2¢?

r 2
SRG2 fd)? 1( fo<t>2>
=2 + +o 1= ) | ede,
W/o S P 2h=)? 2\ (=)

where in the last equality we used the change of variables r = et. Finally, using the fact that
liH(l] fo (%) = 1, which follows from lim %= = +o0, we deduce from (3.1) that
E—

e—0

1
2

By combining this with (3.7) and (3.8), we are led to

5| . gt (190 0 = )
<30+0.) [ "G (log = 47+ 0.1)) ds < 7TV + [Ty +o.(0)

where in the last inequality we used that ¢ > 1, which implies that Os(rs) log "= = o(1).
The claim (3.4) is thus proved.

1 Te
/ (IVlusll2 + o2V + 55 (1 - |ua|2)2) dvdw = (ﬂlog; +y+ oe(l)> :

s

Step 3. Energy estimate outside T'(T').
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In the region Q \ 7,_(I"), we have |u.| = 1 and therefore, using (2.5) and (3.2), we find
Vaue| = |V — Al = [Xr + V fr — Ar| = |jr|.
Using once again that |u.| =1 in Q\ 7,_(I') and that p. < 1 in Q, we have

1 1
_/ P2V aue? + i 51— ue|?)? + / |curl A]* < I,
2 JoT.m 22 2 Jrs

where

1 1 1
I. ::—/ Vau?+ = [ Jewl A]? = = / lgr)® + = / |curl Ap|®.
2 Jo\T.m) 2 Jgs 2 Jo\T.m)

Recalling (2.6), we obtain

I, = CQ’F + W’F| IOng -+ 05(1).

Hence

1 4
(3.9) —/ pg|VAu€|2 + (1 — |u*)? / |curl A|* < 7|T'|logr. + Car + o0-(1).
2 Jarm e?

Step 4. Final energy estimate.
By combining the main estimates from the previous steps, namely (3.3), (3.4), and (3.9),
we are led to
1

5 [ A a0 =+ [ Jeurtap

< x|p?T|[log | + 7T log . + Car + || + 0.(1)

FEvps (uE? A)

N
< W]p?FH loge| + (E + 1) 7|l log|loge| + Car + o0-(1),

where, in the last inequality, we fixed the exponent ¢ = % +1 > 1so that r. = |log 5|_(%+1>,
which allows us to absorb the term «|I'|. We remark that the choice of ¢ is arbitrary among
numbers strictly larger than max{%, 1}. This completes the proof of (1.6).

Step 5. Vorticity estimate. Let B € C'(Q,R?). By integration by parts, recalling (1.2)
and that |u.| =1in Q\ 7, (T"), we have

/u(uE,A)-B /curl( (uE,A)+A)~B:/(j(ug,A)—IrA)-curlB
Q Q Q
:/|u5|2Vg0-curlB+/(1—|u€|2)A~curlB
Q Q

(3.10) = / V- curl B+ / (1 — |u|*)(A = V) - curl B.
Q

TiL(T)

Te
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We start by estimating the second integral in the RHS of (3.10). Since A — Vy = jr €
LY(Q,R3) for q < 2, using that 1 —|u.|* < 1 and b < p? < 1, by applying Holder’s inequality
we deduce that

/TQ(F)(l = [uel*)jr - curl B| < || curl Bl e 10l 3 g gy | (1 = el oz ooy

< CurlBHL"O(Q,R‘?’)H(l - ‘u€‘2>|‘22(Tg(p)7R3)

1
2 3
< Ol curl B[ o (o r3ye3 </ ge (1— ]ugl ) )
Q

(3.11) < C| curl B3| log |3,

where in the last inequality we used that

/”6(1— [uel?)? < Clloge]
Q 5
in view of (3.4).

We now proceed to compute the first integral in the RHS of (3.10). Using (3.2) and an
integration by parts, we obtain

(3.12) /ch-curlB:/ (Xp+pr)-curlB:/curlXp-B.
Q Q Q
Finally, recalling (2.3), from (3.10), (3.11), and (3.12), we deduce that
2 1
(e, A) — 27TF||(C%1(Q’R3))* < Ce3llogel3.
This concludes the proof of (1.7) for = 1. The proof of the estimate for 5 € (0,1) follows

from interpolation. In fact, from [Rom19b, Lemma 8.1}, we have that

1
l4(te; All(cgiamay < C < / (Vauel” + 55 (1= |uef?)” + |Cur1Al2) :
Since p. > b, we deduce that the RHS is bounded above by CF, , (u., A). Using (1.6) and
IT{| (o)) < C, we then deduce that
”,U/(UE, ) — 27TF||(08(Q,R3))* S C| log €|.
To conclude, we use interpolation (see, for instance, [JMS04], which builds upon [JS02])

[ 12(ue, A) — 27T (C2P (0, R3))*

< lp(ue, A) — 27TF|| (ue, A) — 27TF|| CO(Q R3))* < C{53/6| 108;5’1

(CHH(Q,R3))*
This concludes the proof of (1.7) for g € (0,1).
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4. UPPER BOUND FOR THE FIRST CRITICAL FIELD
In this section we provide a proof for Theorem 1.2.

Proof of Theorem 1.2. We consider, for any ¢ sufficiently small, curves I'. such that (1.8),
(1.9), and (1.10) hold. By applying Theorem 1.1 with I' = T'., we obtain a pair (u., A.) €
HY(Q,C) x HY(R?,R?) such that

1 2 > P vz, 1 2
(4.1) F.p.(ue, Ac) = §/QPE|VAEU6| + 252(1 = |uel?)” + 2 - | curl A.|
9 N
< mlpzlellloge| + | — +1 ) mlog|loge| + Car. +o-(1)
and, for any 8 € (0, 1],
2 _2
(4.2) Hu@%ﬁg)—2wﬂﬂmgqﬁwn*§Ckﬁﬂbgdl3@

Notice, in particular, that if assumption (1.9) does not hold, then it becomes necessary to
carefully track the dependence on the curve length in the constants appearing throughout
the proof of Theorem 1.1. The same applies to the present proof, where we will repeatedly
use the bound [pT.| < T < Cy.

We now consider the configuration
(e, Al) = (peuce™ %, A + he A),
where (paeihcxd)g, hex A?) is the Meissner state. Using the energy splitting (2.7), we find

(4.3) GL:(u., A.) = GLg(pgeihex(f’E, heXAg) + F., (u, A:) — hex/ p(ue, Ae) - Bg + .
Q

Let us estimate t. From (2.8), using Holder’s inequality and b < p? < 1, we are led to

4 3
Pe
T S ChZXZEH curl B?H%“(Q) (/;2 5_2(1 — |u6|2)2) .
From (1.6), we find
4
(/%O—WﬁfﬁﬂbﬁL
Q¢
On the other hand, from [DVR25, Proposition 2.2], we have
| curl BY[[24() < C,
where C' does not depend on . Since we assume (1.11), we then deduce that
1
3

t < Ce' ™ |loge|? = o.(1).
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Using (4.2), (1.11), and the fact that B® € C3'(Q,R?) with HBch%ﬁ < C for any f§ €
(0, 1), where the constant C' does not depend on € (see once again [DVR25, Proposition 2.2]),
we find

hex/ ilue, AL) - BY = 2o (Do, BY) + 0.(1) = 2mhoR (L) 2T + o2(1).
Q

Inserting hex > HE + K%log |loge| = “;—F%j' + K%log | loge| and using (1.8), we then obtain

hf/MwﬂﬁiﬁZﬂéﬂm%d+%KRM?ﬁ%H%d+Qﬂ)
Q

Using this together with (4.1) in (4.3), we deduce that

(44) GL.(us, A.) < GL (™% hey AD)

N
+ (— + 1) mlog|loge| + Cor, — 2 K°R.|p?T.|log |loge| + O.(1).
a

Let us now show that there exists ¢y > 0 (independent of ¢) such that
(4.5) |p2T.| > ¢ > 0.

We start by closing I'. by connecting its endpoints with a curve lying on 9€). More precisely,
we consider an arbitrary smooth curve on 0f) that connects the endpoints of I'., oriented
consistently with the orientation of I'. and such that, if we denote by I'. the resulting loop,
we have |T.| < C|I.|. Since B® x v = 0 on 99, by Stokes’ theorem, we have

GLBS:@LBS:L'mﬂﬁ,
N

5

where St_ denotes a surface with least area among those whose boundary is T.,i.e. asolution
to the associated Plateau’s problem.
By Holder’s inequality and the isoperimetric inequality, we have

/ | curl BY| < || curl BY|| s Area(Sr,) < C(IT.[)5 < O|T.|> < C|pT.|.
Sr.

Therefore,
1
RpE(FE) < C|P§F6|§v
which combined with lim iglf R. > 0 and (1.8) yields the claim.
e—

By combining (4.5) and (1.10) with (4.4), we are led to
GLa(usu Aa) < GLa(paeiheXd)Ea hexAg)

N 1
+ ((— + 1) 74 Cy — 2mco K= lim inf RE> log|loge| + O:(1),
(07 2 =0

where we also used that R, > %lim inf._,q > 0 for any ¢ sufficiently small.
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Hence, provided

N
S+ 1)+ C
KO > (a : )77' 0 4 1’
mco liminf R,
e—0
we have
(4.6) GL.(u., A,) < GL.(p.e™% hey AY) —log |loge| 4+ O(1).

On the other hand, by [DVR25, Theorem 1.2], since we assume he, < 7", for n € (0, %)
(recall (1.11)), we know that if (u, A) is a configuration without vortex lines — that is,

|u| > ¢ > 0 for some ¢ > 0 — such that
GL.(u,A) < GL(pee™% hee AD),

then necessarily .
GL:(u, A) = GLc(p.e"%  hee AY) + 0.(1).
Combining this with (4.6), yields

1
GL.(u,A) > GL.(u., A;) + 3 log | log £].

We have thus constructed a configuration (u., A.) with a single vortex line located at T'.,
such that its energy is strictly less than any configuration without vortex lines. Hence the
global minimizer of the energy G'L. must have vortex lines provided

3 0
hex > HZ + K" log|loge].
This concludes the proof. Il
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